Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(2)2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275820

RESUMO

SRC homology 3 (SH3) domains are critical interaction modules that orchestrate the assembly of protein complexes involved in diverse biological processes. They facilitate transient protein-protein interactions by selectively interacting with proline-rich motifs (PRMs). A database search revealed 298 SH3 domains in 221 human proteins. Multiple sequence alignment of human SH3 domains is useful for phylogenetic analysis and determination of their selectivity towards PRM-containing peptides (PRPs). However, a more precise functional classification of SH3 domains is achieved by constructing a phylogenetic tree only from PRM-binding residues and using existing SH3 domain-PRP structures and biochemical data to determine the specificity within each of the 10 families for particular PRPs. In addition, the C-terminal proline-rich domain of the RAS activator SOS1 covers 13 of the 14 recognized proline-rich consensus sequence motifs, encompassing differential PRP pattern selectivity among all SH3 families. To evaluate the binding capabilities and affinities, we conducted fluorescence dot blot and polarization experiments using 25 representative SH3 domains and various PRPs derived from SOS1. Our analysis has identified 45 interacting pairs, with binding affinities ranging from 0.2 to 125 micromolar, out of 300 tested and potential new SH3 domain-SOS1 interactions. Furthermore, it establishes a framework to bridge the gap between SH3 and PRP interactions and provides predictive insights into the potential interactions of SH3 domains with PRMs based on sequence specifications. This novel framework has the potential to enhance the understanding of protein networks mediated by SH3 domain-PRM interactions and be utilized as a general approach for other domain-peptide interactions.


Assuntos
Peptídeos , Domínios de Homologia de src , Humanos , Sequência de Aminoácidos , Proteína Adaptadora GRB2/metabolismo , Ligação Proteica , Filogenia , Peptídeos/metabolismo , Prolina/metabolismo
2.
Biochem J ; 478(14): 2793-2809, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34232285

RESUMO

Growth factor receptor-bound protein 2 (GRB2) is a trivalent adaptor protein and a key element in signal transduction. It interacts via its flanking nSH3 and cSH3 domains with the proline-rich domain (PRD) of the RAS activator SOS1 and via its central SH2 domain with phosphorylated tyrosine residues of receptor tyrosine kinases (RTKs; e.g. HER2). The elucidation of structural organization and mechanistic insights into GRB2 interactions, however, remain challenging due to their inherent flexibility. This study represents an important advance in our mechanistic understanding of how GRB2 links RTKs to SOS1. Accordingly, it can be proposed that (1) HER2 pYP-bound SH2 potentiates GRB2 SH3 domain interactions with SOS1 (an allosteric mechanism); (2) the SH2 domain blocks cSH3, enabling nSH3 to bind SOS1 first before cSH3 follows (an avidity-based mechanism); and (3) the allosteric behavior of cSH3 to other domains appears to be unidirectional, although there is an allosteric effect between the SH2 and SH3 domains.


Assuntos
Proteína Adaptadora GRB2/química , Fosfotirosina/química , Domínios Proteicos , Proteína SOS1/química , Domínios de Homologia de src , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Cinética , Ligantes , Modelos Moleculares , Fosfotirosina/metabolismo , Ligação Proteica , Proteína SOS1/genética , Proteína SOS1/metabolismo
3.
Angew Chem Int Ed Engl ; 60(14): 7612-7616, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33444471

RESUMO

Biological processes rely on transient interactions that govern assembly of biomolecules into higher order, multi-component systems. A synthetic platform for the dynamic assembly of multicomponent complexes would provide novel entries to study and modulate the assembly of artificial systems into higher order topologies. Here, we establish a hybrid DNA origami-based approach as an assembly platform that enables dynamic templating of supramolecular architectures. It entails the site-selective recruitment of supramolecular polymers to the platform with preservation of the intrinsic dynamics and reversibility of the assembly process. The composition of the supramolecular assembly on the platform can be tuned dynamically, allowing for monomer rearrangement and inclusion of molecular cargo. This work should aid the study of supramolecular structures in their native environment in real-time and incites new strategies for controlled multicomponent self-assembly of synthetic building blocks.

4.
J Am Chem Soc ; 142(20): 9106-9111, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32356660

RESUMO

The programmed construction of functional synthetic cells requires spatial control over arrays of biomolecules within the cytomimetic environment. The mimicry of the natural hierarchical assembly of biomolecules remains challenging due to the lack of an appropriate molecular toolbox. Herein, we report the implementation of DNA-decorated supramolecular assemblies as dynamic and responsive nanoscaffolds for the localization of arrays of DNA signal cargo within hierarchically assembled complex coacervate protocells. Protocells stabilized with a semipermeable membrane allow trafficking of single-stranded DNA between neighboring protocells. DNA duplex operations demonstrate the responsiveness of the nanoscaffolds to different input DNA strands via the reversible release of DNA cargo. Moreover, a second population of coacervate protocells with nanoscaffolds featuring a higher affinity for the DNA cargo enabled chemically programmed communication between both protocell populations. This combination of supramolecular structure and function paves the way for the next generation of protocells imbued with programmable, lifelike behaviors.


Assuntos
Células Artificiais/química , DNA/química , Nanopartículas/química , Substâncias Macromoleculares/química , Estrutura Molecular
5.
Chem Commun (Camb) ; 56(43): 5747-5750, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32319466

RESUMO

Synthetic supramolecular polymers are used as dynamic nanoscaffolds for the activation of the apoptotic signalling enzyme caspase-9. Recruitment of caspase-9 to the nanoscaffold results in an increase in enzymatic activity due to enhanced proximity, with a bell-shaped response as a function of nanoscaffold concentration. The modularity of the system allows for dynamic regulation of enzyme activity through variation of the recruitment-motif density along the supramolecular polymer.


Assuntos
Caspase 9/química , Polímeros/química , DNA/química , Nanoestruturas/química , Piridinas/química
6.
J Am Chem Soc ; 141(45): 18030-18037, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31622094

RESUMO

Multivalent display on linear platforms is used by many biomolecular systems to effectively interact with their corresponding binding partners in a dose-responsive and ultrasensitive manner appropriate to the biological system at hand. Synthetic supramolecular multivalent displays offer a matching approach for the modular and bottom-up construction and systematic study of dynamic 1D materials. Fundamental studies into multivalent interactions between such linear, 1D materials have been lacking because of the absence of appropriate modular nanoplatforms. In this work we interfaced two synthetic multivalent linear nanoplatforms based on a dynamic supramolecular polymer, formed by hybrid discotic-oligonucleotide monomers, and a series of complementary DNA-duplex-based multivalent ligands, also with appended short oligonucleotides. The combination of these two multivalent nanoplatforms provides for the first time entry to study multivalent effects in dynamic 1D systems, of relevance for the conceptual understanding of multivalency in biology and for the generation of novel multivalent biomaterials. Together the two nanoscaffolds provide easy access to libraries of multivalent ligands with tunable affinities. The DNA scaffold allows for exact control over valency and spatial ligand distribution, and the discotic supramolecular polymer allows for dynamic adaptation and control over receptor density. The interaction between the two nanoplatforms was studied as a function of ligand interaction strength, valency, and density. Usage of the enhancement parameter ß allowed quantification of the effects of ligand valency and affinity. The results reveal a generalized principle of additive binding increments. Receptor density is shown to be crucially and nonlinearly correlated to complex formation, leading to ultrasensitive responses. The results reveal that, not unlike biomolecular signaling, high density multivalent display of receptors is crucial for functionally increased affinities.

7.
Chem Sci ; 9(40): 7809-7821, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30429990

RESUMO

As molecular self-assembled systems increase in complexity, due to a large number of participating entities and/or the establishment of multiple competing equilibria, their full understanding becomes likewise more complicated, and the use of diverse analytical techniques that can afford complementary information is required. We demonstrate in this work that resonance excitation energy transfer phenomena, measured by fluorescence spectroscopy in combination with other optical spectroscopies, can be a valuable tool to obtain supplementary thermodynamic data about complex supramolecular landscapes that other methods fail to provide. In particular, noncovalent macrocyclization processes of lipophilic dinucleosides are studied here by setting up a competition between intra- and intermolecular association processes of Watson-Crick H-bonding pairs. Multiwavelength analysis of the monomer emission changes allowed us to determine cyclotetramerization constants and to quantify chelate cooperativity, which was confirmed to be substantially larger for the G-C than for the A-U pair. Furthermore, when bithiophene-BODIPY donor-acceptor energy transfer probes are employed in these competition experiments, fluorescence and circular dichroism spectroscopy measurements in different regions of the visible spectrum additionally reveal intermolecular interactions occurring simultaneously at both sides of the macrocyclization reaction: the cyclic product, acting as a host for the competitor, and the monomer reactant, ultimately leading to macrocycle denaturation.

8.
Angew Chem Int Ed Engl ; 57(18): 4976-4980, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29457856

RESUMO

The combination of oligonucleotides and synthetic supramolecular systems allows for novel and long-needed modes of regulation of the self-assembly of both molecular elements. Discotic molecules were conjugated with short oligonucleotides and their assembly into responsive supramolecular wires studied. The self-assembly of the discotic molecules provides additional stability for DNA-duplex formation owing to a cooperative effect. The appended oligonucleotides allow for positional control of the discotic elements within the supramolecular wire. The programmed assembly of these hybrid architectures can be modulated through the DNA, for example, by changing the number of base pairs or salt concentration, and through the discotic platform by the addition of discotic elements without oligonucleotide handles. These hybrid supramolecular-DNA structures allow for advanced levels of control over 1D dynamic platforms with responsive regulatory elements at the interface with biological systems.


Assuntos
DNA/química , Oligonucleotídeos/química , Substâncias Macromoleculares/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...